

1.Introduction of the Sagar Group

Founded in 1981, Sagar Cements Limited is a prominent Indian cement manufacturer with a production capacity of 10.50 MTPA, and earning the reputation of being the trusted choice in the construction industry

Our Mission

To be India's most respected and attractive company in our industry – creating value for all our stakeholders.

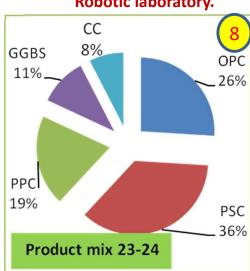
Our Vision

To provide foundations for the society's future.

GreenPro

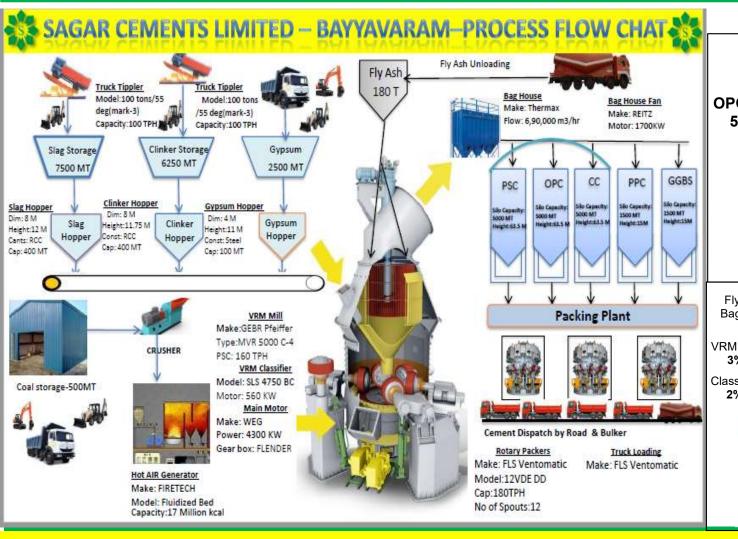

Product certification as a mark of SUSTAINABLE PRODUCT quality

GreenCo
Plant process
certification as a mark
of ENVIRONMENTAL
FRIENDLY manufacturing

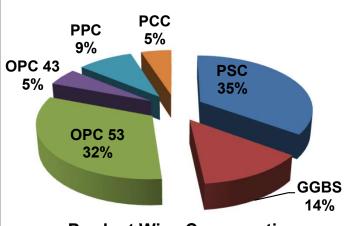

Plant @ Mattampally	Plant @ Gudipadu	Plant @ Bayyavarar
GOLD	GOLD	PLATINUM
√	√	√
		√
	V	√
		√
	200000	GOLD GOLD

1.Introduction of the Bayyavaram Plant

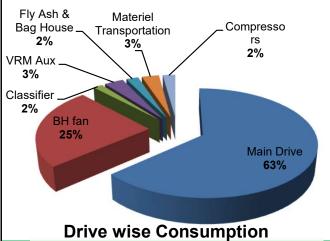
Intelligent MCC - Motor Feeders


EV Vehicles for Material Transport

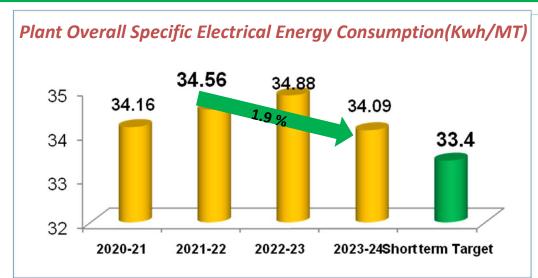
Roof Top Solar plant

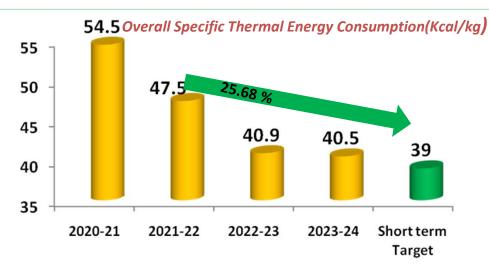

Green Product share-74%

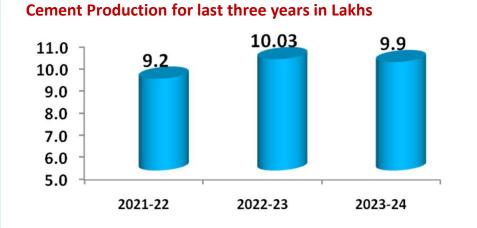
1.Introduction of the Bayyavaram Plant

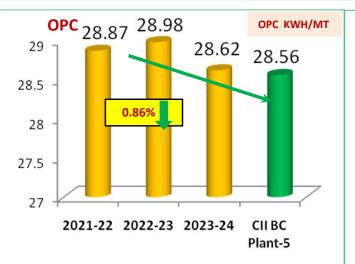


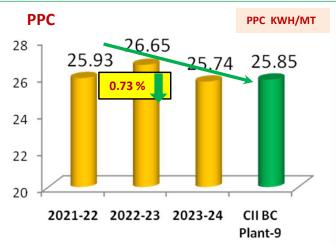
Performance Evaluation of Energy Intensive Equipment

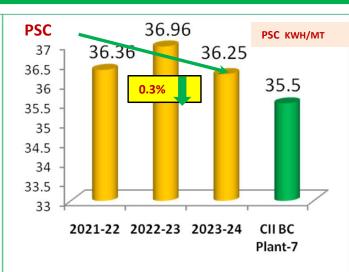



Product Wise Consumption

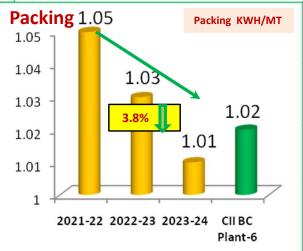

2. Sp. Energy Consumption in last 3 years (FY 2021-24)

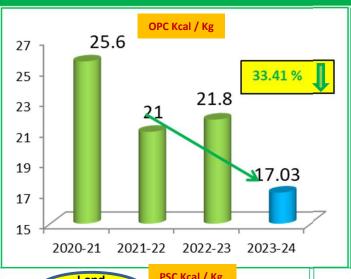


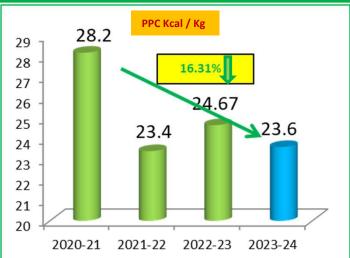


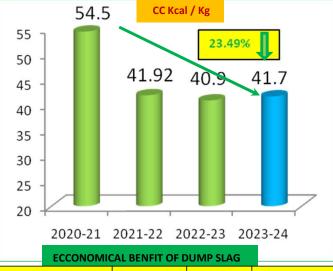


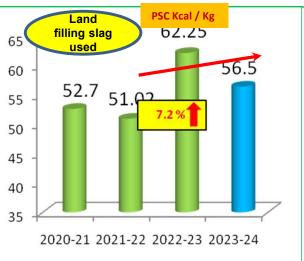

2. Sp. Energy Consumption in last 3 years (FY 2021-24)

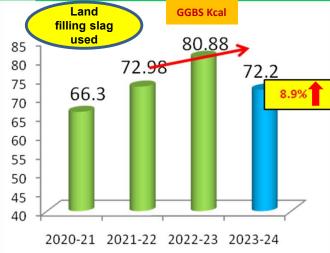


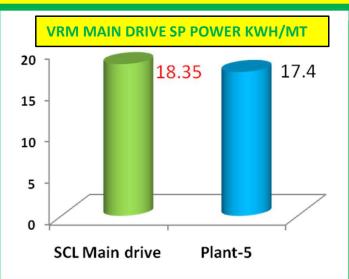


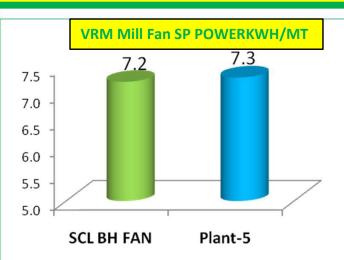

Specific Electrical Energy -Last 3 Years

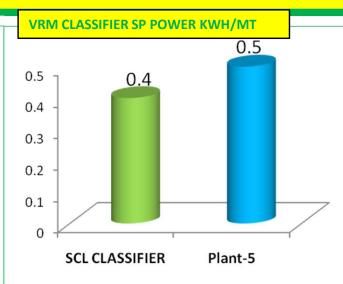

Year	2021-22	2022-23	2023-24
Production(MT)	9,14,859	10,03,298	9,90,242
Energy consumption (Million Kwh)	34.52	34.89	34.54

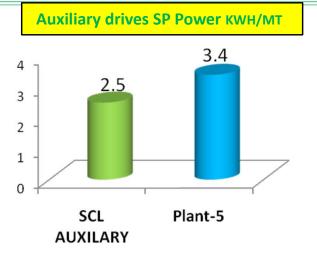

2. Sp. Thermal Energy Consumption in last 3 years (FY 2021-24)

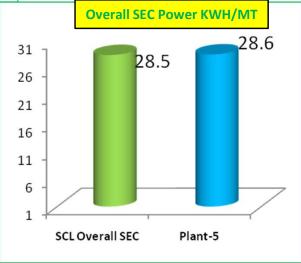







ECCONOMIC				
Description	Unit	BF slag	Dump slag	
Basic price per ton	Rs/-	1207	955	
Moisture Content	%	10%	18%	
Consumption				
Percentage	%	50	50	
Consumption in FY-				
2023-24	MT	3	81700	
Coal consumption	Kg/ton	13.5	18.5	
Thermal cost increased	Rs/ton		23.2	
saving per ton-Wet				
base	Rs/-ton		126	
saving per Year-Wet	Lakhs/Ann		270	
base	um	278		


2. Sp. Energy Consumption in last 3 years (FY 2021-24)



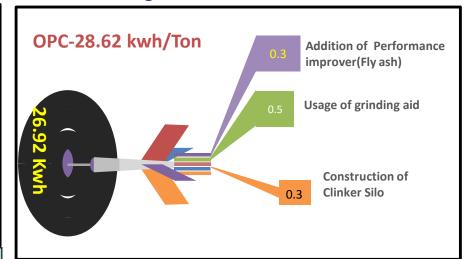
Specific Electrical Energy							
Parameter	SCL	Plant-5(MVR 6000 C6)					
Main drive	18.35	17.4					
Mill fan	7.2	7.3					
Separator/Classifier	0.4	0.5					
Auxiliary drives power	2.5	3.4					
Overall SEC	28.45	28.6					

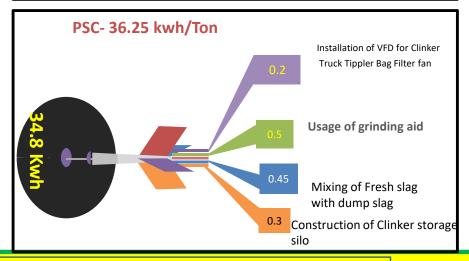
3. Information on Competitors, National & Global benchmark

Short term/Long term Target & National Benchmarking


SI. No.	Description	Specific Electrical Energy (KWH / Ton) ption		Bench Mark	Short Term Target	Long Term Target	Neighbour Plant		
		2020-21	2021-22	2022-23	2023-24	CII *	2024-25	2026-27	2022-23
1	PPC	26.14	25.93	26.65	25.74	20.2	25.2	24.5	25.95
2	OPC	28.26	28.87	28.98	28.62	24.5	28.0	27.2	28.43
3	PSC	35.49	36.36	36.96	36.25	29.8	35.5	34.4	37.24
4	GGBS	38.53	38.42	39.96	38.21	-	37.4	36.3	39.93
5	СС	-	28.14	29.04	27.69	28.5	27.1	26.3	29.8
6	Packing Plant	1.26	1.05	1.03	1.01	0.7	0.99	0.96	1.21

^{*} Source: CII -Energy Benchmarking for Cement Industry version 6.0 (5.5.2-Cement Mill-VRM)





Road Map to achieve national/global benchmarking

Sl. No.	Description	SE Energy (KWH / Ton)	Bench Mark	How close to CII- National
		2023-24	CII *	Where we
1	PSC	36.25	34.8	Plant-7
2	OPC	28.62	25.0	Plant-5
3	PPC	25.74	21.18	Plant-9
4	GGBS	38.21	-	No benchmark
5	СС	27.69	27.0	Plant-1(Others)
5	Packing Plant	1.01	1.02	Plant-6

* Source : CII -Energy Benchmarking for Cement Industry version 6.0 May-2023(5.5.2-Cement Mill-VRM)

Road Map to achieve national/global benchmarking

3. Information on Competitors, National & Global benchmark

Road Map: Action Plan with Target & Responsibility to reach National Bench mark

	PSC	Project Description	Electrical saving KWH	Achieved 2023- 24(KWH/Ton)	% of Benefit Expected	Target By	Responsibility	Reviewed By	Status
·	1	Mixing of Fresh slag with dump slag	/ Ton 0.45		1.24%	24-Dec	Mr.Gopi Reddy	Plant Head	Project under execution
+	Т	Installation of VFD for Clinker Truck	0.45		1.24%	24-Dec	ivir.Gopi Reddy	Plant nead	Project under execution
	2	Tippler Bag Filter fan	0.2	36.25	0.55%	24-Dec	Mr.N Satish	Plant Head	Approval Stage
	3	Usage of grinding aid	0.5	30.23	1.38%	25-Nov	Mr.Gopi Reddy	חבם אוז חבוע ו	SIMCO-G-5411 usaing and acheveing good results
	4	Construction of Clinker storage silo	0.3		0.83%	25-Apr	Plant Head	G.P	Civil work under progress
		Total	1.45	34.8	4.00%				
	PPC	Project Description			%	Target By	Responsibility		Status
	1	Usage of Grinding aid	0.5		1.94%	25-Nov	Mr. Gopi reddy	Diant Hoad	Material received at site and waiting for Plant stoppage
	2	Fly ash Bin capacity enhancement from 180TPH to 500TPH	1.05	25.83	4.07%	25-Nov	Mr. Gopi reddy	Plant Head	SIMCO-G-5411 usaing and acheveing good results
	3	Higher storage capacity silo for PPC	0.75		2.90%	25-Mar	Plant Head	Plant Head	Drawings approved, Waiting for material.
		Total	2.3	23.53	8.90%				
	ОРС	Project Description			%	Target By	Responsibility		Status
$\left[\right]$	1	Addition of Performance improver(Fly ash)	0.3		1.07%	25-Dec	Mr.Gopi Reddy	Plant Head	Approval Stage
	2	Usage of grinding aid	0.5	28.02	1.78%	25-Nov	Mr.Gopi Reddy	i Piant Head	SIMCO-G-5411 using and achieving good results
	3	Construction of Clinker Silo	0.3		1.07%	25-Apr	Plant Head	G.P	Civil work under progress
		Total	1.1	26.92	3.93%				

4. Energy Saving projects implemented in last three years 🕏

Energy Conservation Projects Completed in last Three years FY 2021-2024

Year	No of Energy Saving Projects			Total Savings (INR Million)	Impact on SEC (Electrical KWH / MT Cement)
2021-22	11	2.9	0.36	8.18	0.427
2022-23	11	8.8	0.618	5.125	0.664
2023-24	10	6.03	0.983	14.99	1.18
FY 2021-24	32	17.73	1.961	28.295	2.271

Energy Conservation Projects –Planned FY 2024-25

S.No.	Year	Title of Project	Annual Electrical savings (Million kwh)	Annual thermal Saving (million Kcals)	Total Annual savings (Rs Lakhs)	Investment (Rs million)
1	1 /11/4-/5	Mill feed RAL Over load tripping avoided by reverse function enabled in VFD drive.	0.00738	0	0.52	0
2	1 /11/4-/5	Auxiliary bag filter RAL operation optimization with Bag filter Hopper level sensor	0.011	0	0.78	0.1
3	2024-25	Slag feeding belt feeder replaced with chute	0.11988	0	8.39	0
4	2024-25	Capacity enhancement of Fly ash bin from 180 Ton to 500 Tons	0.1035	0	7.25	5
5	17074-75	Bag filter Optimization in Material handling by usage of Dry slag	0.1188	0	8.32	0
6	11114-15	Construction of Clinker silo 15,000 MT to avoid clinker hopper empty.	0.0596	0	4.17	100
7	1 /11/4-/5	Material Handling section Bag Filter fans operation with VFD-2X37KW	0.0732	0	5.12	0.6
8	1 /11//1-/5	Upgradation of HAG from 2nd generation to 3rd generation by removing Ash hoppers	0.0	30	0.0	0.2
9	2024-25	Installation of Solid flow meter for Performance improver in OPC product	0.6	0.00028	42	0.25
10	2024-25	Stack chimney inlet duct connection to HAG outlet	0	6804	8.84	0.15
		TOTAL	1.09	6804	85.39	106.3

4. Energy Saving projects implemented in last three years

Energy Conservation Projects - Last 3 Years

S.No.	Year	Title of Project	Total Annual savings (Rs Lakhs)	Annual Electrical savings (Million kwh)	Annual thermal Saving (Rs Lakhs)	Impact on SEC/ SHC	Investment (Rs Million)
1	FY 2021-22	Old Packing Plant Packer capacity enhancement from 54tph to 90 tph by increasing elevator buckets volume.	0.32	0.045	0	0.05	0
2	FY 2021-22	Installation of LP Compressor in place of 55 GA Compressor for flay ash unloading from tanker to Bin	0.382	0.054	0	0.06	1.5
3	FY 2021-22	Usage of waste wood for firing in place of disel for HAG restarting.	2.8.	0	28.6		0
4	FY 2021-22	Optimization of bag house fan flow by removing orifice in bag house outlet duct.	1.814	0.025	0	0.03	0
5	FY 2021-22	Packer-1 &2 Bag filter(30KW) operation with VFD in place of DOL	0.52	0.074	0	0.09	0.5
6	FY 2021-22	Increasing of reject vibrating screen height to avoid the refalling of reject material.	0.413	0.005	0	0.007	0
7	FY 2021-22	Provided Insulation of Load Center outside AC duct to avoid condensation	1.210	0.017	0	0.02	0.3
8	FY 2021-22	Installation of IE3 motors in place of IE1 Motors	1.890	0.027	0	0.03	0.5
9	FY 2021-22	Reject RAL drive (3.7KW) stopped by connecting chute to mill feed path.	1.134	0.016	0	0.09	0
10	FY 2021-22	Silo bucket elevator load optimized by changing the bag house purging sequence	0.5	0.071	0	0.02	0
11	FY 2021-22	Installation of Auto MRP and Bag Counting system by integration with ERP	1.97	0.026	0	0.03	0.1
		Sub Total Sagar I	8.183	0.36	28.6	0.427	2.9

Energy Conservation Projects - Last 3 Years

S.No	Year	Title of Project	Total Annual savings (Rs Miilons)	Annual Electrical savings (Million kwh)	Annual thermal Saving (Rs Million)	Impact on SEC/ SHC	Investment (Rs Million)
1	FY 2022-23	Classifier efficiency improved by providing ring at wear ring	1.28	0.183	0	0.20	0
2	1 [] / [/] / -/ 5	Bag house air slide optimization by connecting one air slide blower for 2 air slides	0.34	0.048	0	0.054	0.0
3	1 FY /II//-/-	Additional truck loading machine installation for old packer to maximize packer operation	0.315	0.045	0	0.05	0.50
4	1 FY /11//=/-	Old packer truck loading machine trolley length extension to minimize loading time of truck.	0.42	0.060	0	0.06	0
5	1 FY /U//-/5	Reduce the heat loss through HAG doors by arrest the false air by using transparent glass	0.058	0.000	0.005	0	0.3
6	1 FY 70177-73	Use of 3KW water pump instead of 7.5KW pump for process water for mill operation.	0.8	0.011	0	0.01	0
7	FY 2022-23	37 KW VFD installed for VRM auxiliary bag filter fan	0.542	0.074	0	0.09	0.5
8	FV 2022-23	Reject bucket elevator inclination changed and vibration level increase for free material increase	0.42	0.060	0	0.06	0
9	1 FY 2U22-23	Compressors optimization by installing IFC at compressor line	0.72	0.104	0	0.11	6.0
10	1 FY /U//-/3	Installation of magnetic separator on clinker and slag unloading conveyor	0.12	0.018	0	0.02	1.5
11	FY 2022-23	Installation of Belt conveyor in place of screw conveyor at Clinker circuit	0.11	0.015	0	0.01	0
		Sub Total	5.125	0.618	0.005	0.664	8.8

Energy Conservation Projects -Last 3 Years

SNO	Year	Name of Energy saving projects	•		Thermal savings (Million Kcal)	Total Savings (INR Million)	Impact on SEC/ SHC (Electrical kWh /MT cement Kcal/Kg cement)
1	2023-24	Mill fan damper removed to avoid damper losses and Energy conservation	0.2	0.162	0	1.30	0.18
2	2023-24	Bio fuel usage in place of Coal by- 55% TSR	0.2	0.082	O	7.952	0.10
3	2023-24	Arresting of false air entry at Roller sealing area	1	0.16425	0	1.14	0.167
4	2023-24	GGBS bucket elevator load enhancement	3.5	0.13505	0	1.08	0.18
5	2023-24	Optimization of Power factor from 0.98 to 0.995	0	0.3	0	2.4	0.37
6		30KW blower installed in place of 37kw blower for fly ash feeding	0.38	0.00438	0	0.035	0.04
7	2023-24	Packing Plant truck loading machine tilting conveyor chute installation	0.1	0.027	0	0.216	0.03
8	2023-24	VFD installation for clinker surface feeder(120SF01)	0.75	0.0144	0	0.115	0.02
9	2023-24	Bulk loading system optimization to avoid idle running of blowers	0.1	0.0324	0	0.2592	0.04
10	2023-24	Mill feed VFD BF speed optimized	0	0.062	0	0.497	0.05
		Total	6.03	0.983632		14.99	1.18

5.Innovative Projects implemented

SE

Project -1: Usage of Biofuels in Hot Air generator - Category -1

Understanding:

SCL group commitment net zero by 2050 and by 30% reduction by 2030.

By taking this group theme we are inculcating to use alternate bio fuels(Sawdust ,Wood chips) in Hot air generator to replace fossil fuels.

Hot Air Generator is installed for generation of hot gas for the Drying of Wet Materials (eg.Slag, Gypsum).

We are using Fluidized bed type Hot air generator in our plant which is having three burners.

Actual Problem:

Initially we have started with 5% saw dust along with coal and we have not observed any abnormality but after 15% we are facing two issues.

Problem -1:We are facing frequent jamming of Coal crusher due to small wood chips struck in the crusher screen(Screen size-6mm to 8mm).

It was taking more than 4 hours to complete the job and it was hampering the plant operation.

Problem-2: We are using screw conveyor to feed coal into hot air generator along with Saw dust.

We are not getting required temperature in HAG even after screw is running with full speed as Saw dust having low density and unable to feed required quantity.

Coal and Saw dust

5.Innovative Projects implemented

Project -1: Usage of Biofuels in Hot Air generator - Category -1

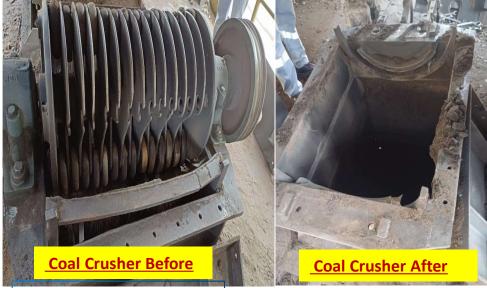
Innovative solution:

Removing of crushers from the circuit by making crusher as feed chute and procuring crushed coal(Below 6mm).

Decreasing of Coal screw Sprockets from 50 to 24 to increase the screw speed.

TSR Increased from 5% to 55%.

Results:


TSR increased up to 55%

Saving of Rs -7.17/- Lakhs with Sprockets modification instead of new screw purchase.
CO2 emission reduction

Scope-1 emissions reduction by 29.6%.

Savings:

	BIOFUELS ECONOMIC FUEL BENFIT								
S.No	Description	Unit	Base	Only Coal(R s/Ton)	Mixing(Rs /Ton)	Saving/t on	Production- MT	Total Saving	
1	Coal/Saw dust	Kcal/ kg	40.5	76.3	68.3	8.03	990242	79,52,289	

BEFORE MODIFICATION

Motor speed: 1400 rpm

Designed GB ratio: 39.40

GB output speed:36 rpm

GB shaft sprocket teeth: 17 no

Screw sprocket teeth: 50 No

Output rpm: 12.24

AFTER MODIFICATION

Screw sprocket teeth: 24 No

Output rpm: 25.5

9166 MT CO2

5. Innovative Projects implemented

Project -2: Installation of In-house dryer for LP Compressor-Categoy-1

Understanding:

- ➤ We have installed Low Pressure Compressor(2.5 Bar) for Fly ash unloading from tanker, instead of high pressure compressor with in built dryer(6 bar).
- ➤ But due to high moisture formation in LP compressed air we are unable to use this compressor for Fly ash unloading.
- ➤ We have invested 25 Lakhs for LP compressor but due to moisture issue we are using 90KW compressor fr Fly ash unloading.

Actual Problem:-

- ➤ We are in coastal region with high humidity (80-95%) moisture will be high.
- ➤ Due to moisture entry nearly 2-3 tons of material is remaining in the tanker.
- > Safety point of view high pressure compressor is not acceptable for Fly ash unloading.

BEFORE

5. Innovative Projects implemented

Project -2: Installation of In-house dryer for LP Compressor-Categoy-1

OEM was unable to give proper solution with existing compressor to avoid moisture and they were suggesting to install external dryer which was costing 17.5 Lakhs.

Our team has thought innovatively made in house dryer for LP compressor with in house material(AC Coils with out door unit).

Working Principal: Compressor warm air enters the in house dryer and cooled , then moisture in the air condenses into water droplets. This water drop lets drain out through Auto drain valves.

Results:

- 1. Flyash is unloading with low pressure (2bar).
- 2. Avoid the explosion of tank accidents.
- 3. Fly ash unloading issues cleared like jamming
- 3. Direct power saving and Productivity improved.

	Make	Rated KW	Running KW	Pressure	Flow-cfm	Unloading Time
Before	Atlas	90	102	6 bar	598	0:40
After	Kaishan	55	60	2 bar	700	0:40

Saving

Saving/ Tanker-Kwh	Takers /day	takers /Year	Annual savings-Kwh	Annual savings- Lakhs	Emission reduction
42	7	2557	107394	8.6	76 MT

AFTER

Innovative Projects implemented

Project-3:HAG FLY ASH COLLECTING HOPPERS BOTTM DUMMIED -Category -1

Understanding:

- ➤ We are using Fluidized bed type Hot air Generator for Cement Mill.
- This HAG have three burners and each burner have one ash hopper to collect the ash after burning the coal.
- As per OEM design ash will be discharged through Rotary air locks and by screw conveyors it will transferred to bucket elevator to mill feed circuit.

Problem:-

- Frequent jam of Rotary air lock(RAL) and screw conveyor we have bypassed the circuit and unloading the material directly and it was creating high fugitive dust emission.
- ➤ As a regular practice we have to unload ash from HAG ash collecting hoppers on daily basis.
- This ash have temperature of 500 deg and we have to cool the ash after unloading from ash collecting hopper.
- > We will use water spray to cool the temperature and then loaded into Wheel Loader and mixed with slag.
- ➤ While unloading and cooling of ash heavy dust emissions releasing into environment.

Innovative Projects implemented

Project-3: HAG FLY ASH COLLECTING HOPPERS BOTTM DUMMIED -Category -1

Innovative Solution:-

OEM was unable to give proper solution for handling of High temperature material and our team thought beyond OEM design.

We have closed ash hopper bottom portion with MS Plate and covered the plate with single layer of refractory bricks and observed no ash accumulation at the bottom of the hoppers.

The entire ash directly going to the mill by existing draft(-10mmwc to -15mmwc). After this modification completely avoided manual ash handling, dust emissions and safety related issues.

Results:

- 1. Fugutive emission avoided completely.
- 2.Manual intervention with high temperature was avoided and safe work environment created.
- 3. Temerature losses decreased.
- 4. Productivity improved.

Natural resource(Water consumption) avoided

Saving

S.No	Description	Kwh/Hr		Annual Saving(Rs in Lakhs)	C02 Reduction(Ton)
1	Power Saving	10.5	57488	4.6	40.8

6. Utilisation of Renewable Energy sources

SAGAR CEMENTS LIMITED

Renewable Power Allotment

SCL/ /Hyd/2024-25/01

Dt: 19.08.2024

The Sr. Vice President (Works), Mattampally, The Asst. Vice President (Works), Gudipadu Unit, The Senior General Manager (Works), Bayyavaram Unit.

Sub: - RE Allocation for FY 2024-25 - Reg.

During Energy Management review meeting held on 08.06.2022, the allocation of renewable power from our group companies has been decided as noted below.

				Percent	age of Allo	cation
S.No	Description	Installed Capacity	Expected Generation in MW	Mattampally	BVRM	Gudipadu
1	WHRS	8.80 MW	52248	100		
2	Solar Mattampally	1.25 MW	1305	100		
3	Solar HO	80 KW	120	100		
4	SCL - Hydro Power Plants	8.30 MW	32248		100	
5	SPL - Theni	1.65 MW	3116		\ /	100
6	RVC Wind Firms	2.35 /	-			100

All are requested to note the same

Thanking You. Yours sincerely. For Sagar Cements Limited. SRINIVAS Digitally signed by SRINIVAS REDIDY SAMMIDI S Srinivas Reddy

VP - Power Projects

Registered Office: Plot No. 111, Phone No: +91 - 40 - 23351571, 23356573 Fax: +91

Total Group Green Power-26.43MW. 100% (8.3MW) Hydro Power allotted to Bayyavaram Plant.

Mattampally, Telangana

Capacity	3.00 MTPA
Captive power	28.23 MW
Thermal power	18.00 MW
Green energy	10.23 MW
Limestone resource	s 395.30 MnT
Markets	AP, TG, TN, OD, MH

Certifications: Green Co Gold, Green Pro for PPC. NABL accredited Laboratory, 5-star rating for Mines by IBM

Gudipadu, Andhra Pradesh

Markets	AP, KA, TN, TG
Limestone resources	164.81 MnT
Thermal Power	25.00 MW
Captive power	25.00 MW
Capacity	1.25 MTPA

Capacity	1.00 MTPA
Captive power	5.30 MW
Green energy	5.30 MW
Limestone resources	67.87 MnT
Markets	Western MP, GJ, RJ, MH

Jeerabad, Madhya Pradesh

Dachepalli, Andhra Pradesh

Markets	TG, AP, TN & KA
Limestone resources	315.77 Mn7
Thermal Power	30.00 MW
Captive power	30.00 MW
Capacity	2.25 MTPA

Markets	AP and South OD
Green energy	8.43 MW
Captive power	8.43 MW
Capacity	1.50 MTPA

Certifications: Green Co Platinum, Green Pro for PPC, CC, and IPL, NABL Accredited Laboratory

Jajpur, Odisha

Capacity	1.50 MTPA		
Markets	OD, WB, JH		

6 Utilisation of Renewable Energy sources

On site-Renewable-

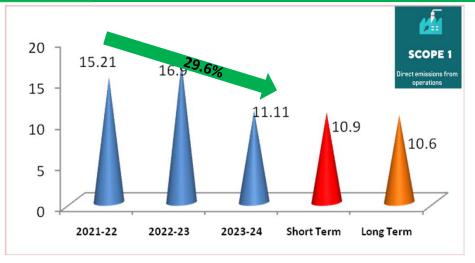
Roof Top solar on office building and staff quarters top

Year	Technolo gy	Type of Energy	On site / Off site	Installed Capacity (in MW)	Generation (in Million Kwh)	% Over all electrical energy
2021-22	PV Cell	Solar	On-Site	0.130	0.123	0.44
2022-23	PV Cell	Solar	On-Site	0.130	0.121	0.39
2023-24	PV Cell	Solar	On-Site	0.130	0.107	0.36

Off site-Renewable-

4.3 MW in Guntur .4MW in Kurnool Hydro plants

Year	Techn ology	Type of Energy	On site / Off site	Installed Capacity (in MW)	Generation (in Million Kwh)	% Over all electrical energy
2021-22	PV Cell	Hydro	Off-Site	8.3	27.70	88.34
2022-23	PV Cell	Hydro	Off-Site	8.3	32.24	75.37
2023-24	PV Cell	Hydro	Off-Site	8.3	4.99	14.54



7. GHG Inventorization

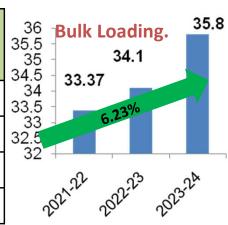
Absolute Emissions and Emissions intensity of last three years

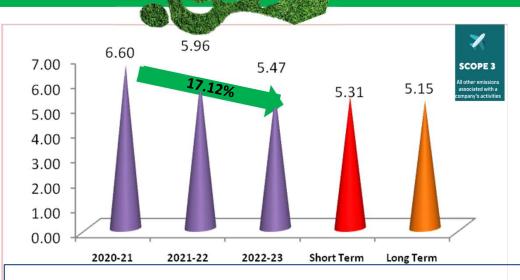
, ,							
WBCSD Cement Sustainability Initiatives							
	FY-20	21-22	FY-2	FY-2022-23		FY 2023-24	
Descriptio n	CO2(MT)	Kg CO2/Ton of cement	CO2(MT)	Kg CO2/Ton of cement	CO2(MT)	Kg CO2/Ton of cement	
Scope-1	13917	15.21	16162	16.9	13482	11.1	
Scope-2	19054	24.4	19057	24.6	24203	23.3	
Scope-3	10909	12.3	10992	11.3	11307	11.2	
		59.1		52.8		45.6	

45.6

59.1

7. GHG Inventorization




Target (short term/ long term) for CO2 emission reduction and action plan

Scope -1&2

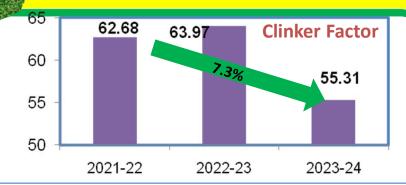
- Increase of slag addition in PSC from 57.5% to 60% on dry basis.
- Consistently maintain fly ash addition in PPC @ 35%.
- 5% addition of performance improver (fly ash/slag) in OPC.
- Cement to Clinker factor 0.55 to 0.50.
- Implementation of identified energy conservation project
- Switching to 100% Renewal Energy
- Increase of Bio fuels from 55% to 75%

Year	% Hydro / Solar	% Grid	
FY:2020-21	77.81	22.19	
FY:2021-22	88.34	11.66	
FY:2022-23	75.37	24.63	
FY:2023-24	14.9	85.1	

Scope-3

- Logistic management,70% of sales within 200KM range.
- Encouragement of bulk transportation from 35.8 % to 38 %.
- Improving fleet efficiency.
- EV100 To switching to 100% Electric Vehicles
- Present in beginning stage Procured 2 no's Electrical Trucks for raw material transportation and Cement dispatch.

7. GHG Inventorization


GHG intensity of peers/competitors

drid intensity	oj peers/co	impetitors	-		
	FY-20	23-24	Ramco Cement	Chettinad Cement	
Description	CO2(MT)	CO2(MT) Kg CO2/Ton of Cement		Kg CO2/Ton of Cement	
Scope-1	13482	11.1	15.7	20.4	
Scope-2	24203	23.3	24.3	26.6	
Scope-3	11307	11.2	12.4	15.0	

Awareness to the Transporters:

- Prohibited to use of Transport vehicles older than 15 years.
- Insisting on pollution certificates of the vehicles, practicing random checking of them.
- Not allowing loads higher than the design / permitted capacity.

۰						
	Product Sales Distance in					
	<u>Percentage</u>					
	Distance (KM)	2023-24				
	0-50	40				
	51-100	31				
	101-200	21				
	>200	8				

Improvement of Clinker Factor:

- ➤ To improve Clinker factor We are using Grinding aid (SIMCO-G-5411) IN PSC PRODUCT and reduced clinker consumption by 3%.
- ➤ We have improved Green product share by 29.4% to improve Clinker factor.

Name of raw material	UOM	2023-24
Total cement production	MT	9,90,242
Slag consumption	MT	337820.86
Fly ash	MT	80002.92
Phosphor	MT	15687.82
Total Byproduct material	MT	433511.63
43.78 % raw materials are By- products/waste of other industries	%	43.78%

8. EMS System and other requirements

Existing Energy parameters monitoring system

Plant is having 61 Nos networked digital energy meters connected to plant DCS. All major and more than 5% energy intesive equipments have meters and connected to DCS .Day wise & Product wise Electrical, Thermal energy report is generated in the system automatically.

Instant specific power and Plant MD monitoring system displayed in operator screen

				BAYYAVARAM	I was a second	
			onsumption R	eport on	07-05-22	
SLNo		Consumption			CRIDCUM EVAH	6,97,80
	EMCL(E/AH)	1,39,800		0.987	CELDCUM EWE	6,90,20
1—	EFECL(EWH)	1,38,000	Ie lax	436	140E\0. DG	
H-	VRMSection				Total Cons. (KWH)	1,38,43
1		R.Hes	PR O (Dry)	Units / Day	KW/Hr	(Kuh/Ten)
-	New VRM - PSC Units			0.1000	5005	
1	Main D rive (4300KW)	Į.		31303	3885	23.13
2	Bag House Fan (1700KW)	8.38	1354	9966	1126	7.36
4	Classifier (560KW)	0.00	1,000,000	1490	186	1.10
5	VRM Auxiliariers (MCG-2)			1192	149	0.88
6	Fly Ash & Bag House (MCC-3)	TPH-wet	171	969	121	0.72
7	Materail Transportation (MCG-1)	TPH-Dry	162	1050	113	7.8
8	Compressors- PDB	BH Fan rpm	887	630	124	0.47
	Total Units	Classifier RPM	1140	46600	5705	34.43
$\overline{}$	New VRM - OPC Units		11110	10000	2.02	21112
	Main D rive (4300KW)			18089	2201	17.66
1					7	
2	Bag House Fan (1700KW)	5.52	1024	7128	3	6.96
4	Classifier (560KW)		100E160	510	85	0.50
5	VRM Auditariers (MCG-2)			921	154	0.90
6	Fly Ash & Bag House (MCC-3)	TPH-wet	186	611	100	0.60
7	Materail Transportation (MCC-1)	TPH-Dry	186	757	103	0.74
8	Compressors- PDB	BH Fan rpm	904	55 58.0	135	0.57
Ť	Total Units	Classifier RPM	825	78, 0	5184	27.93
$\overline{}$	New VRM - GGBS Units	0.000	023		5104	2133
_				29512	2002	
1	Main D rive (4300KW)		_ •		3963	25.06
2	Bag House Fan (1700KW)	7.44	1178	8025	972	6.81
4	Classifier (560KW)	7.33		1326	173	1.13
5	VRM Auxiliariers (MCC-2)			1065	139	0.90
6	Fly Ash & Bag House (MCC-3)	TPH-wet	72	1153	151	0.98
7	Materail Transportation (MCG-1)	TPH-Dry	158	770	91	0.65
8	Compressors PDB	BH Fan rpm	850	598	136	0.51
_	Total Units	Classifier (P.V)	1116	42450	5747	36.05
_	New VRM - PPC Units	GILLOCHI GILLOC	1110	42450	2747	3025
1	Main D rive (4300KW)	-10		3697	2900	15.32
2	Bag House Fan (1700KW)		0.44 40	1585	1170	6.56
4	Classifier (580KW)	1.27	241.40	110	110	0.46
5	VRM Auxiliariers (MCG-2)			143	143	0.59
6	Fly Ash & Bag House (MCC 1)	TPH-wet	192	166	166	0.69
7	Materail Transport. do. 10. 1)	TPH-Dry	190	169	155	0.70
8	Compressors- PDB	BH Fan rpm	890	102	159	0.42
	New Vi. M. I. C. dnits	Classifier RPM	959	5973	4803	24.74
	New Vi. VI- I De Units					
1			ļ.	4723	3398	18.31
2	Bag House Fan (1700KW)	1.39	258	1835	1320	7.11
4	Classifier (580KW) VRM Auxiliariers (MCC-2)		100000	125	90	0.48
5		TDLIsent	100	144	104	0.56
7	Fly Ash & Bag House (MCC-3)	TPH-wet TPH-Dry	186 186	192 65	138	0.74
8	Materail Transportation (MCC-1) Compressors-PDB	BH Fan rpm	186 890	149	47 107	0.25
-	Total Units	Classifier RPM	#DIV/0!	7234	5204	28.04
1	Packing Plant	P.R.Hrs	Dispatch	Units/Day	TPH	(Kwh/Ton.)
	MCC - 4(Common Ckt)				IFR	(KWR/10R)
2		7.03	342	601	_	+
3	MCC - 5 (Packer - 1-OPC)	8.60	1131	363	-	+
4	MGC -8 (Packer - 2-PSC)	10.67	785	754		0.85
5	Old Packing Plant		369	476		0.02
6	Compressors			420		1
	Total Packing Plant	1	3064	2614		
	Total Compressor(Mill+RM)			2064		0.51
1	Staff Colony	PXP	cv	391	CM-3 R.HRS	24.00
2	Distribution Losses	0.6	4600	1267	CLINKER R.HRS	9.43
_						
3	Misc(3,4th Fir AC+ wdg works+str+wo		12000	3307	SLAG R.HRS	11.23
		OPC	PPC	CC	PSC	GGBS
4	water consumption-Lt/Ton	22.2 6.07	24.6 5.90	8.6 8.21	12.60	18.29

8. EMS System and other requirements

MANAGEMENT SYSTEM CERTIFICATE

10000336309-MSC-RvA-IN

02 January 2020

Valid: 02 January 2023 - 01 January 2026

This is to certify that the management system of

Sagar Cements Limited

on total turnover of the

company

Bayyavaram (Village), Kasimkota (Mandal), Anakapalli, Visakhapatnam - 531031, Andhra Pradesh, India

/ ISO 9001 :2015 – Quality Management Systems

GreenCo-PLATINUM

- ✓ <u>ISO 14001:2015</u> Environmental Management Systems
- ✓ <u>ISO 45001:2018</u> Occupational Health & Safety Management Systems
- √ "Testing Laboratory" got "NABL accreditation" in 2019 As per ISO/IEC 17025:2017

	SI. Io.	Description of meeting	Headed by	Frequency
	1	Production & Performance review meeting	Plant Head	Daily
	2	High Power committee meeting	Joint Managing Director / Group President	Monthly on 5th
L	3	Energy Review meetings	Plant Head	Quarterly

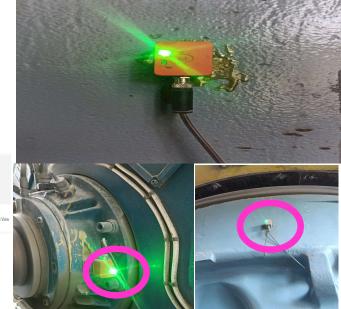
Energy Efficiency / awareness training programme

- Energy Awareness week celebrations by conducting various competitions among the employees.
- · Suggestion, kaizen scheme.
- Capacity building by internal and external trainings.
- Visiting other units for sharing and gaining good practices.

8. EMS System and other requirements

Learning from CII or any other award programs

The Confederation of Indian Industry (CII) is working to facilitate Industries to Achieve World Class Levels In Energy Efficiency. In the journey of Excellence we found CII as most enduring companion.


Various Energy saving projects implemented in our plant are replicated from Knowledge sharing programs and events by CII. Some of these projects are as follows:

- Installation of Intelligent flow controller for Air compressor system for optimization.
- Installation of LP Compressor for Fly ash unloading system.

Monitoring of Equipment Healthiness-Installation of Intelligible Vibration, Speed & Temperature Sensor on VRM Gear Box

- ❖Installed 6No's of Intelligible sensor, on VRM Gearbox for monitoring of vib
- ❖ration, speed and temperature.
- ❖Mounting Position : 1.Gear box bevel Gear. 4. Motor NDE
 - 2. Gear Box Helical Gear, 5. Motor DE
 - 3. main Ring Gear, 6. Gear Box Input
- ❖By installing these sensor, the condition of Gear box is been monitored online for Vibration, speed and temperature through WIFI device.
- ❖ Alert notification is been sent to the maintenance team, in case of any abnormality.

9.NET Zero commitment

Targets

Net Zero

SBT 1.5°-SCENARIO BY 2030 CCS/CCU

SCOPE 1 EMISSIONS TO BE REDUCED TO

495кg

Net CO₂/M1

3Y 2030

SCOPE 2 EMISSIONS TO BE REDUCED TO

8kg Net CO₂/MT

SCOPE 3 EMISSIONS TO BE REDUCED TO

15.50 кg

Sagar Cements Limited (SGC) is dedicated to its ESG vision 2030,

with a focus on achieving a positive transformation in its environmental, social, and governance practices. A robust ESG performance has become integral to SGC's strategic framework, emphasizing its commitment to adhering to a responsible and forward-thinking business approach

Roadmap for 30% reduction by 2030 and finally becoming Net Zero by year 2050

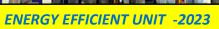
- ➤ Increased use of de-carbonated raw materials.
- >Increased thermal efficiency and reduction of specific thermal consumption.
- ➤ Increased use of Alternate fuels for pyro process and drying.
- > Reduction of clinker ratio in the cement.
- >Increased electrical efficiency and reduction in specific electricity consumption.
- >Increased ratio of Green Energy & Use of EV, Fuel cell, hybrid vehicles for material transport.

ESG Planning Activities

- > Documentation for implementing ISO 26000 is completed and ready for deployment.
- > Submitted commitment to SBTi to reduce CO2 emissions in line with SBTi targets of 1.5deg C. CDP (Carbon Disclosure Project)
- > ESG VISION statement is developed.
- ➤ Entered agreement with M/s UNIQUS for ESG Framework development and prepare for the rating system

Public Discloser of GHG Emissions in IR Report

Plant Certification & Awards


Any other awards, acknowledgement, Major Achievements from CII

NATIONAL ENERGY LEADER -2022

Star Performance award received from CII on Green Co Summit

MANAGEMENT

Excellent Energy Efficient Unit-2020

Plant Certification & Awards

Mr. K Srinivasarao

Sr. G.M (Works)-Plant Head

Email: Srinivasaraok@sagarcements.in

Ph: 7997990901

N Satish – Manager (E&I)

Lead Presenter

Email: satishn@sagarcements.in

Ph: 7997990913

